Normalizing flows are generative models that provide tractable density estimation via an invertible transformation from a simple base distribution to a complex target distribution. However, this technique cannot directly model data supported on an unknown low-dimensional manifold, a common occurrence in real-world domains such as image data. Recent attempts to remedy this limitation have introduced geometric complications that defeat a central benefit of normalizing flows: exact density estimation. We recover this benefit with Conformal Embedding Flows, a framework for designing flows that learn manifolds with tractable densities. We argue that composing a standard flow with a trainable conformal embedding is the most natural way to model manifold-supported data. To this end, we present a series of conformal building blocks and apply them in experiments with synthetic and real-world data to demonstrate that flows can model manifold-supported distributions without sacrificing tractable likelihoods.


翻译:标准化流是一种基因模型,通过从简单的基数分布向复杂的目标分布的可垂直转换,提供可移动密度估计。然而,这一技术不能直接模拟由未知的低维多元数据支持的数据,这是真实世界领域,如图像数据等常见现象。最近试图纠正这一限制的尝试引入了几何复杂因素,从而挫败了正常流的主要好处:精确密度估计。我们利用“非正式嵌入流”来恢复了这一效益,该模型是设计流动的框架,以学习具有可移动密度的柱形。我们争辩说,以可训练的符合嵌入方式构建标准流,是模拟多维支持数据的最自然的方式。为此,我们提出了一系列符合要求的建筑块,并应用这些块进行合成和真实世界数据实验,以证明流动可以模拟多种支持的分布,而不会牺牲可移动的可能性。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
44+阅读 · 2020年10月31日
最新《图嵌入组合优化》综述论文,40页pdf
专知会员服务
34+阅读 · 2020年9月7日
《常微分方程》笔记,419页pdf
专知会员服务
72+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2021年7月15日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
5+阅读 · 2018年5月31日
Arxiv
5+阅读 · 2018年4月13日
Arxiv
6+阅读 · 2018年3月29日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
44+阅读 · 2020年10月31日
最新《图嵌入组合优化》综述论文,40页pdf
专知会员服务
34+阅读 · 2020年9月7日
《常微分方程》笔记,419页pdf
专知会员服务
72+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员