Normalizing flows are generative models that provide tractable density estimation via an invertible transformation from a simple base distribution to a complex target distribution. However, this technique cannot directly model data supported on an unknown low-dimensional manifold, a common occurrence in real-world domains such as image data. Recent attempts to remedy this limitation have introduced geometric complications that defeat a central benefit of normalizing flows: exact density estimation. We recover this benefit with Conformal Embedding Flows, a framework for designing flows that learn manifolds with tractable densities. We argue that composing a standard flow with a trainable conformal embedding is the most natural way to model manifold-supported data. To this end, we present a series of conformal building blocks and apply them in experiments with synthetic and real-world data to demonstrate that flows can model manifold-supported distributions without sacrificing tractable likelihoods.
翻译:标准化流是一种基因模型,通过从简单的基数分布向复杂的目标分布的可垂直转换,提供可移动密度估计。然而,这一技术不能直接模拟由未知的低维多元数据支持的数据,这是真实世界领域,如图像数据等常见现象。最近试图纠正这一限制的尝试引入了几何复杂因素,从而挫败了正常流的主要好处:精确密度估计。我们利用“非正式嵌入流”来恢复了这一效益,该模型是设计流动的框架,以学习具有可移动密度的柱形。我们争辩说,以可训练的符合嵌入方式构建标准流,是模拟多维支持数据的最自然的方式。为此,我们提出了一系列符合要求的建筑块,并应用这些块进行合成和真实世界数据实验,以证明流动可以模拟多种支持的分布,而不会牺牲可移动的可能性。