In this paper, we study the problem of escaping from saddle points in smooth nonconvex optimization problems subject to a convex set $\mathcal{C}$. We propose a generic framework that yields convergence to a second-order stationary point of the problem, if the convex set $\mathcal{C}$ is simple for a quadratic objective function. Specifically, our results hold if one can find a $\rho$-approximate solution of a quadratic program subject to $\mathcal{C}$ in polynomial time, where $\rho<1$ is a positive constant that depends on the structure of the set $\mathcal{C}$. Under this condition, we show that the sequence of iterates generated by the proposed framework reaches an $(\epsilon,\gamma)$-second order stationary point (SOSP) in at most $\mathcal{O}(\max\{\epsilon^{-2},\rho^{-3}\gamma^{-3}\})$ iterations. We further characterize the overall complexity of reaching an SOSP when the convex set $\mathcal{C}$ can be written as a set of quadratic constraints and the objective function Hessian has a specific structure over the convex set $\mathcal{C}$. Finally, we extend our results to the stochastic setting and characterize the number of stochastic gradient and Hessian evaluations to reach an $(\epsilon,\gamma)$-SOSP.


翻译:在本文中, 我们研究如何以平滑的非convex优化化问题的方式从马鞍点中解脱出来。 我们建议了一个通用框架, 如果 convex 设置 $\ mathcal{C} 美元对于二次目标功能来说很简单, 那么这个框架的顺序就会简单。 具体地说, 我们的结果可以维持, 如果人们能找到 $\ rho$- 近似解决方案, 在多边时间, $\ mathcal{ C} $, $\\ rho < 1$ 是正常数, 取决于 设置 $\ mathcal{ C} 的结构。 在此条件下, 我们显示, 由拟议框架生成的折叠序在 $( epsilon,\ gamma) 美元( SOS) 最多在 mathcal { O} ( max ) 中, 将 3\\\\ gamma_ 3_ 美元( 3} 美元) 。 我们进一步定义SOS a caldealtical ral ral ral ma ral ral ral ral ral) 设置一个特定的Secal 。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2018年4月22日
Arxiv
3+阅读 · 2018年3月13日
VIP会员
相关资讯
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员