Neural networks tend to forget previously learned knowledge when continuously learning on datasets with varying distributions, a phenomenon known as catastrophic forgetting. More significant distribution shifts among datasets lead to more forgetting. Recently, parameter-isolation-based approaches have shown great potential in overcoming forgetting with significant distribution shifts. However, they suffer from poor generalization as they fix the neural path for each dataset during training and require dataset labels during inference. In addition, they do not support backward knowledge transfer as they prioritize past data over future ones. In this paper, we propose a new adaptive learning method, named AdaptCL, that fully reuses and grows on learned parameters to overcome catastrophic forgetting and allows the positive backward transfer without requiring dataset labels. Our proposed technique adaptively grows on the same neural path by allowing optimal reuse of frozen parameters. Besides, it uses parameter-level data-driven pruning to assign equal priority to the data. We conduct extensive experiments on MNIST Variants, DomainNet, and Food Freshness Detection datasets under different intensities of distribution shifts without requiring dataset labels. Results demonstrate that our proposed method is superior to alternative baselines in minimizing forgetting and enabling positive backward knowledge transfer.


翻译:神经网络在不断学习分布各异的数据集时,往往会忘记先前学到的知识,这是一种被称为灾难性的遗忘现象。在数据集中,更显著的分布变化导致更多的人忘记。最近,基于参数的孤立化方法显示在克服遗忘方面有巨大的潜力,因为分布变化很大。然而,由于在培训期间为每个数据集修定神经路径,在推断过程中需要数据集标签,因此这些网络受到一般化不足的影响。此外,这些网络并不支持落后的知识转让,因为它们优先考虑过去的数据,而不优先考虑未来的数据。在本文中,我们提出了一种新的适应性学习方法,名为“适应CL”,充分再利用和增加学到的参数,以克服灾难性的遗忘,并允许在不需要数据集标签的情况下进行积极的后退转移。我们提议的技术通过允许最佳地重新利用冻结参数,在相同的神经路径上发展。此外,它们使用参数级数据驱动的剪裁来赋予数据同等的优先地位。我们还对MNIST 变量、 DomainNet 和食品新鲜度探测数据集进行了广泛的实验。我们提出的方法在不要求数据设置数据设置标签的不同强度下,在不同的分配转移的强度下,充分重新使用。结果表明我们的拟议方法有利于向后最晚的转移。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月26日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
12+阅读 · 2020年8月3日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员