Cloth-changing person reidentification (ReID) is a newly emerging research topic that is aimed at addressing the issues of large feature variations due to cloth-changing and pedestrian view/pose changes. Although significant progress has been achieved by introducing extra information (e.g., human contour sketching information, human body keypoints, and 3D human information), cloth-changing person ReID is still challenging due to impressionable pedestrian representations. Moreover, human semantic information and pedestrian identity information are not fully explored. To solve these issues, we propose a novel identity-guided collaborative learning scheme (IGCL) for cloth-changing person ReID, where the human semantic is fully utilized and the identity is unchangeable to guide collaborative learning. First, we design a novel clothing attention degradation stream to reasonably reduce the interference caused by clothing information where clothing attention and mid-level collaborative learning are employed. Second, we propose a human semantic attention and body jigsaw stream to highlight the human semantic information and simulate different poses of the same identity. In this way, the extraction features not only focus on human semantic information that is unrelated to the background but also are suitable for pedestrian pose variations. Moreover, a pedestrian identity enhancement stream is further proposed to enhance the identity importance and extract more favorable identity robust features. Most importantly, all these streams are jointly explored in an end-to-end unified framework, and the identity is utilized to guide the optimization. Extensive experiments on five public clothing person ReID datasets demonstrate that the proposed IGCL significantly outperforms SOTA methods and that the extracted feature is more robust, discriminative, and clothing-irrelevant.


翻译:暂无翻译

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员