To minimize the sediment flowing to the outlet of a river catchment with minimal effort or cost, it is important to select the best areas to perform a certain intervention, e.g., afforestation. CAMF (Cellular Automata based heuristic for Minimizing Flow) is a method that performs this selection process iteratively in a raster geodatabase environment. To simulate the flow paths, the original CAMF uses a Single Flow Direction (SFD) algorithm. However, SFD fails to reflect the real nature of flow transport, especially in areas with low relief. This paper describes and analyzes the integration of a Multiple Flow Direction (MFD) algorithm in CAMF, in order to provide a more realistic flow simulation. We compare the computational complexity of CAMF-SFD and CAMF-MFD and we discuss the scalability w.r.t. the number of cells involved. We evaluate the behavior of both variants for sediment yield minimization by afforestation in two catchments with different properties.
翻译:为了尽量减少流入河流集水区出口的沉积物,必须尽量少费或少费地选择最佳区域进行某种干预,例如植树造林。CAMF(以碳自动法为基础的最大限度地减少水流的超光速)是在光栅地理数据库环境中迭接进行这一选择过程的一种方法。为模拟水流路径,原CAMF使用了单流方向算法。然而,SFD未能反映水流迁移的真实性质,特别是在低度地区。本文描述并分析了多流方向算法在CAMF(多流方向算法)中的整合情况,以提供一个更现实的流量模拟。我们比较了CAMF-SFD和CAMFM-MFM(MF)的计算复杂性,并讨论了有关细胞数量的可缩度。我们评估了两种变式在具有不同特性的两个集水区通过植树造林使沉积物最小化而使沉积物最小化的行为。