We propose the challenge of rapid task-solving in novel environments (RTS), wherein an agent must solve a series of tasks as rapidly as possible in an unfamiliar environment. An effective RTS agent must balance between exploring the unfamiliar environment and solving its current task, all while building a model of the new environment over which it can plan when faced with later tasks. While modern deep RL agents exhibit some of these abilities in isolation, none are suitable for the full RTS challenge. To enable progress toward RTS, we introduce two challenge domains: (1) a minimal RTS challenge called the Memory&Planning Game and (2) One-Shot StreetLearn Navigation, which introduces scale and complexity from real-world data. We demonstrate that state-of-the-art deep RL agents fail at RTS in both domains, and that this failure is due to an inability to plan over gathered knowledge. We develop Episodic Planning Networks (EPNs) and show that deep-RL agents with EPNs excel at RTS, outperforming the nearest baseline by factors of 2-3 and learning to navigate held-out StreetLearn maps within a single episode. We show that EPNs learn to execute a value iteration-like planning algorithm and that they generalize to situations beyond their training experience. algorithm and that they generalize to situations beyond their training experience.


翻译:我们提出在新的环境中迅速解决问题的挑战,即代理人必须在不熟悉的环境中尽快解决一系列任务。一个有效的RTS代理必须在探索不熟悉的环境和解决当前任务之间取得平衡,一方面要建立新环境的模型,在面对后期任务时可以规划。虽然现代深层RL代理机构孤立地展示了其中的一些能力,但没有一种能适应新的RTS的完整挑战。为了能够向RTS取得进展,我们引入了两个挑战领域:(1)一个叫作记忆和规划游戏的最低限度RTS挑战,以及(2)一流的Shot StreetLearn导航,它从真实世界的数据中引入了规模和复杂性。我们证明,在这两个领域,最先进的RTS代理机构都无法在新的环境中进行规划。尽管现代深层RL代理机构在孤立地展示了这些能力,但我们开发了Episodi规划网络并展示了ERPS在RTS上最优秀的深度RL代理机构,通过2-3级因素表现了最近的基线,并学习了在单一的阶段内绘制稳住的Streal-Leararson地图。我们展示了EPOL系统,以便进行总体的学习。

0
下载
关闭预览

相关内容

RTS:Real-Time Systems。 Explanation:实时系统。 Publisher:Springer。 SIT:http://dblp.uni-trier.de/db/journals/rts/
【DeepMind】强化学习教程,83页ppt
专知会员服务
155+阅读 · 2020年8月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
7+阅读 · 2018年4月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月29日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
8+阅读 · 2018年7月12日
VIP会员
相关VIP内容
【DeepMind】强化学习教程,83页ppt
专知会员服务
155+阅读 · 2020年8月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
7+阅读 · 2018年4月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员