In the Maximum Weight Independent Set of Rectangles problem (MWISR) we are given a weighted set of $n$ axis-parallel rectangles in the plane. The task is to find a subset of pairwise non-overlapping rectangles with the maximum possible total weight. This problem is NP-hard and the best-known polynomial-time approximation algorithm, due to by Chalermsook and Walczak (SODA 2021), achieves approximation factor $O(\log\log n )$. While in the unweighted setting, constant factor approximation algorithms are known, due to Mitchell (FOCS 2021) and to G\'alvez et al. (SODA 2022), it remains open to extend these techniques to the weighted setting. In this paper, we consider MWISR through the lens of parameterized approximation. Grandoni et al. (ESA 2019) gave a $(1-\epsilon)$-approximation algorithm with running time $k^{O(k/\epsilon^8)} n^{O(1/\epsilon^8)}$ time, where $k$ is the number of rectangles in an optimum solution. Unfortunately, their algorithm works only in the unweighted setting and they left it as an open problem to give a parameterized approximation scheme in the weighted setting. Our contribution is a partial answer to the open question of Grandoni et al. (ESA 2019). We give a parameterized approximation algorithm for MWISR that given a parameter $k$, finds a set of non-overlapping rectangles of weight at least $(1-\epsilon) \text{opt}_k$ in $2^{O(k \log(k/\epsilon))} n^{O(1/\epsilon)}$ time, where $\text{opt}_k$ is the maximum weight of a solution of cardinality at most $k$. Note that thus, our algorithm may return a solution consisting of more than $k$ rectangles. To complement this apparent weakness, we also propose a parameterized approximation scheme with running time $2^{O(k^2 \log(k/\epsilon))} n^{O(1)}$ that finds a solution with cardinality at most $k$ and total weight at least $(1-\epsilon)\text{opt}_k$ for the special case of axis-parallel segments.


翻译:在最大 Weight 独立矩形 问题 (MWISR) 中, 我们被赋予了一组加权的 $( =log\ log n) 。 在未加权的设置中, 常数的参数接近率算法为美元( =) 美元( log\ log n) 。 任务在于找到一组配对的非重叠矩形, 且其总重量可能最大。 这个问题是NP- 硬的, 以及最知名的 MIN- 时间近似算法, 由 Chalermsook 和 Walczak (SODO 2021) 和 Walczak (SDSO) 给出了美元( 1- enclon) 美元( log) 和 美元( 美元) 美元( 美元) 。 在未加权的基数中, 恒定的基价算法值算法程( $( =) 美元( 美元) 。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员