There is a lack of data on the location, condition, and accessibility of sidewalks across the world, which not only impacts where and how people travel but also fundamentally limits interactive mapping tools and urban analytics. In this paper, we describe initial work in semi-automatically building a sidewalk network topology from satellite imagery using hierarchical multi-scale attention models, inferring surface materials from street-level images using active learning-based semantic segmentation, and assessing sidewalk condition and accessibility features using Crowd+AI. We close with a call to create a database of labeled satellite and streetscape scenes for sidewalks and sidewalk accessibility issues along with standardized benchmarks.
翻译:缺乏关于世界各地人行道的地点、状况和可及性的数据,这不仅影响到人行地点和旅行方式,而且从根本上限制了互动制图工具和城市分析,本文介绍利用分级、多级关注模型从卫星图像中半自动地建立人行道网络地形学的初步工作,利用积极学习的语义分割从街道图像中推断表层材料,并利用Crowd+AI评估人行道状况和可及性特征。我们最后呼吁建立一个有标签的卫星和街道景象数据库,用于人行道和人行道无障碍问题以及标准化基准。