Machine learning on encrypted data can address the concerns related to privacy and legality of sharing sensitive data with untrustworthy service providers. Fully Homomorphic Encryption (FHE) is a promising technique to enable machine learning and inferencing while providing strict guarantees against information leakage. Since deep convolutional neural networks (CNNs) have become the machine learning tool of choice in several applications, several attempts have been made to harness CNNs to extract insights from encrypted data. However, existing works focus only on ensuring data security and ignore security of model parameters. They also report high level implementations without providing rigorous analysis of the accuracy, security, and speed trade-offs involved in the FHE implementation of generic primitive operators of a CNN such as convolution, non-linear activation, and pooling. In this work, we consider a Machine Learning as a Service (MLaaS) scenario where both input data and model parameters are secured using FHE. Using the CKKS scheme available in the open-source HElib library, we show that operational parameters of the chosen FHE scheme such as the degree of the cyclotomic polynomial, depth limitations of the underlying leveled HE scheme, and the computational precision parameters have a major impact on the design of the machine learning model (especially, the choice of the activation function and pooling method). Our empirical study shows that choice of aforementioned design parameters result in significant trade-offs between accuracy, security level, and computational time. Encrypted inference experiments on the MNIST dataset indicate that other design choices such as ciphertext packing strategy and parallelization using multithreading are also critical in determining the throughput and latency of the inference process.
翻译:加密数据的机器学习可以解决与与不值得信赖的服务提供者共享敏感数据的隐私和合法性有关的问题。完全单调加密(FHE)是一种很有希望的技术,可以使机器学习和推推,同时提供严格的信息泄漏保障。由于深层神经神经网络(CNN)已成为若干应用中选择的机器学习工具,已多次尝试利用CNN从加密数据中提取洞见。然而,现有工作仅侧重于确保数据安全,忽视模型参数的安全性。它们还报告高层次的实施,而没有提供对FHE实施CNN通用原始操作者(如 convolution、非线性激活和集合)的准确性、快速交易交易的严格分析。在这项工作中,我们把机器学习视为一种服务(MLAS)情景,其中输入数据和模型参数和模型参数都得到保证。 我们所选择的FHE计划的业务参数,例如精密多级多级多级协议的精确度、深度交易规则的精确度限制,以及我们主要级的精确度设计方法的精确度分析方法,包括我们主要级的精度设计方法的精确度的精确度,例如精度的精度的精度的精度的精度的精度的精度的精度的精度的精度,以及精确度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度,以及精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度。