We present a strategy grounded in the element removal idea of Bruns and Tortorelli [1] and aimed at reducing computational cost and circumventing potential numerical instabilities of density-based topology optimization. The design variables and the relative densities are both represented on a fixed, uniform finite element grid, and linked through filtering and Heaviside projection. The regions in the analysis domain where the relative density is below a specified threshold are removed from the forward analysis and replaced by fictitious nodal boundary conditions. This brings a progressive cut of the computational cost as the optimization proceeds and helps to mitigate numerical instabilities associated with low-density regions. Removed regions can be readily reintroduced since all the design variables remain active and are modeled in the formal sensitivity analysis. A key feature of the proposed approach is that the Heaviside functions promote material reintroduction along the structural boundaries by amplifying the magnitude of the sensitivities inside the filter reach. Several 2D and 3D structural topology optimization examples are presented, including linear and nonlinear compliance minimization, the design of a force inverter, and frequency and buckling load maximization. The approach is shown to be effective at producing optimized designs equivalent or nearly equivalent to those obtained without the element removal, while providing remarkable computational savings.


翻译:我们提出了一个基于布鲁斯和托托雷利[1]要素删除概念的战略,目的是降低计算成本,绕过基于密度的地形优化的潜在数字不稳定性。设计变量和相对密度都体现在固定的、统一的有限元素网格上,并通过过滤和 Heaviside 投影连接。分析领域的相对密度低于特定阈值的区域从远端分析中删除,代之以虚构的节点边界条件。这导致计算成本随着优化的收益而逐步削减,有助于减少与低密度区域相关的数字不稳定性。去除的区域可以随时重新出现,因为所有设计变量仍然活跃,并在正式敏感度分析中建模。拟议方法的一个关键特征是,海维赛德函数通过扩大过滤所达到的敏感度,促进沿着结构界限重新进行材料的重新引入。提出了几个2D和3D结构表层优化实例,包括最大限度地减少线性和非线性合规性,设计了与低密度区域有关的力量,频率和重负负负负载的频率,可以随时重新引入。该方法的主要特征是,在不作等同的优化的计算时,将产生有效的节约。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员