Task generalization has been a long standing challenge in Natural Language Processing (NLP). Recent research attempts to improve the task generalization ability of pre-trained language models by mapping NLP tasks into human-readable prompted forms. However, these approaches require laborious and inflexible manual collection of prompts, and different prompts on the same downstream task may receive unstable performance. We propose Unified Schema Prompt, a flexible and extensible prompting method, which automatically customizes the learnable prompts for each task according to the task input schema. It models the shared knowledge between tasks, while keeping the characteristics of different task schema, and thus enhances task generalization ability. The schema prompt takes the explicit data structure of each task to formulate prompts so that little human effort is involved. To test the task generalization ability of schema prompt at scale, we conduct schema prompt-based multitask pre-training on a wide variety of general NLP tasks. The framework achieves strong zero-shot and few-shot generalization performance on 16 unseen downstream tasks from 8 task types (e.g., QA, NLI, etc). Furthermore, comprehensive analyses demonstrate the effectiveness of each component in the schema prompt, its flexibility in task compositionality, and its ability to improve performance under a full-data fine-tuning setting.
翻译:在自然语言处理(NLP)中,任务一般化是一个长期的挑战。最近的研究试图通过将经过培训的语言模型的特征绘制成人可读的促动形式,提高经过培训的语言模型的任务一般化能力,但是,这些方法需要艰苦和不灵活地人工收集提示,而同一下游任务的不同提示可能得到不稳定的性能。我们建议统一Schema Affer, 一种灵活和可推广的促进性方法,根据任务投入计划自动定制每项任务的可学习提示;它模拟任务之间的共享知识,同时保持不同任务计划的特点,从而增强任务一般化能力。这些方法利用每项任务的明确数据结构来制定迅速的提示,以便很少涉及人类的努力。为了测试大规模地快速规划的任务普遍化能力,我们为国家语言处理项目的一般任务进行基于迅速和扩展的多任务前培训。这个框架从8个任务类型(eg、QA、全面性能分析中显示其全面性能分析)的16个隐性下游任务类别(即性、全面性能分析中显示其全面性能分析)。