Motivated by questions originating from the study of a class of shallow student-teacher neural networks, methods are developed for the analysis of spurious minima in classes of gradient equivariant dynamics related to neural nets. In the symmetric case, methods depend on the generic equivariant bifurcation theory of irreducible representations of the symmetric group on $n$ symbols, $S_n$; in particular, the standard representation of $S_n$. It is shown that spurious minima do not arise from spontaneous symmetry breaking but rather through a complex deformation of the landscape geometry that can be encoded by a generic $S_n$-equivariant bifurcation. We describe minimal models for forced symmetry breaking that give a lower bound on the dynamic complexity involved in the creation of spurious minima when there is no symmetry. Results on generic bifurcation when there are quadratic equivariants are also proved; this work extends and clarifies results of Ihrig & Golubitsky and Chossat, Lauterback & Melbourne on the instability of solutions when there are quadratic equivariants.
翻译:研究一组浅层次学生-教师神经网络引起的问题引发了对与神经网有关的梯度等异动动态类别中假微微粒的分析方法。在对称的情况下,方法取决于对称组对称符号不可减损表达的通用等离差双裂理论,特别是美元;标准代表值$S_n美元。事实证明,自发的对称断裂并不产生虚假的微粒现象,而是通过地貌几何结构的复杂变形来分析。在对称的情况下,对称组对称符号($S_n_n$n$);特别是,标准代表值为$S_n美元。事实证明,自发的对称断裂并非产生虚假的微粒,而是通过由通用的$S_n$QQQQequivariat 和Choosaliquiat 的对地貌地貌特征进行复杂的变形。我们描述强制对强迫对称断裂的最小模式,这种模式在没有对称性微型模型的创建具有较弱的动态复杂性。当存在二次均匀等等等异性时,一般的对等异性解释的结果也得到证实;这项工作的工作延伸并澄清和澄清和澄清了Irig & Golvaritictrequest的解决方案的结果。