Building on top of a regression model, Conformal Prediction methods produce distribution free prediction sets, requiring only i.i.d. data. While R packages implementing such methods for the univariate response framework have been developed, this is not the case with multivariate and functional responses. conformalInference.multi and conformalInference.fd address this void, by extending classical and more advanced conformal prediction methods like full conformal, split conformal, jackknife+ and multi split conformal to deal with the multivariate and functional case. The extreme flexibility of conformal prediction, fully embraced by the structure of the package, which does not require any specific regression model, enables users to pass in any regression function as input while using basic regression models as reference. Finally, the issue of visualisation is addressed by providing embedded plotting functions to visualize prediction regions.
翻译:以回归模型为基础, 共变预测方法产生分布自由预测数据集, 只要求i.d. d. 数据。 虽然已经开发了用于单轨响应框架的这类方法的R包, 但多变量和功能响应却不是这样。 符合的Inference. 多重和符合的Inference. fd 解决了这一空白, 扩展了古老和较先进的符合的预测方法, 如全齐、 分立、 joknife+ 和多分割的预测方法, 以处理多变量和功能案例。 符合的预测具有极大的灵活性, 被包的结构所完全接受, 不需要任何具体的回归模型, 使用户能够在任何回归函数中作为输入, 使用基本的回归模型作为参考。 最后, 视觉化问题是通过提供嵌入的绘图功能, 将预测区域进行可视化处理 。