We study spreading of a droplet, with insoluble surfactant covering its capillary surface, on a textured substrate. In this process, the surfactant-dependent surface tension dominates the behaviors of the whole dynamics, particularly the moving contact lines. This allows us to derive the full dynamics of the droplets laid by the insoluble surfactant: (i) the moving contact lines, (ii) the evolution of the capillary surface, (iii) the surfactant dynamics on this moving surface with a boundary condition at the contact lines and (iv) the incompressible viscous fluids inside the droplet. Our derivations base on Onsager's principle with Rayleigh dissipation functionals for either the viscous flow inside droplets or the motion by mean curvature of the capillary surface. We also prove the Rayleigh dissipation functional for viscous flow case is stronger than the one for the motion by mean curvature. After incorporating the textured substrate profile, we design a numerical scheme based on unconditionally stable explicit boundary updates and moving grids, which enable efficient computations for many challenging examples showing significant impacts of the surfactant to the deformation of droplets.
翻译:我们研究在纹理基质上撒布一个小滴子,用无法溶解的表面表面活性剂覆盖其毛细表面。 在此过程中, 依赖表面的表面张力控制着整个动态的行为, 特别是移动的接触线。 这使我们能够从溶解的表面活化剂所铺设的小滴的完整动态中得出:(一) 移动的接触线, (二) 毛细表面的进化, (三) 这个移动的表面表面的表面表面表面表面表面表面表面表面的表面表面表面表面表面表面表面动态,在接触线的边界状态下有一个边界状态, (四) 流滴液内不可压缩的粘粘性流体。 我们根据Onsager原则, 用Raylegleg dispit 原则的衍生基础, 用于滑块内粘结流的粘结流, 或用毛毛细表面表面的平均弯曲体运动。 我们还证明, 粘结体流的雷利消散功能强于以平均弯曲形运动的动作。 在整合了文本子剖面的剖面的剖面之后, 我们设计了一个数字图, 基图,, 以不断 直直直清晰清晰的边界更新和移动的移动的地形变变形模型, 来显示着的浮变形模型。