In this letter, we revisit the IEQ method and provide a new perspective on its ability to preserve the original energy dissipation laws. The invariant energy quadratization (IEQ) method has been widely used to design energy stable numerical schemes for phase-field or gradient flow models. Although there are many merits of the IEQ method, one major disadvantage is that the IEQ method usually respects a modified energy law, where the modified energy is expressed in the auxiliary variables. Still, the dissipation laws in terms of the original energy are not guaranteed. Using the widely-used Cahn-Hilliard equation as an example, we demonstrate that the Runge-Kutta IEQ method indeed can preserve the original energy dissipation laws for certain situations up to arbitrary high-order accuracy. Interested readers are highly encouraged to apply our idea to other phase-field equations or gradient flow models.
翻译:在这封信中,我们重新审视了IEQ方法,并对它保存原始能源消耗法的能力提供了新的视角。无差异能源二次化(IEQ)方法被广泛用于设计分阶段或梯度流模型的能源稳定数字方案。虽然IEQ方法有许多优点,但一个主要缺点是IEQ方法通常尊重经修改的能源法,其中经修改的能源法以辅助变量的形式表示。然而,原始能源的消散法没有得到保障。我们以广泛使用的Cahn-Hilliard方程式为例,证明Runge-Kutta IEQ方法确实可以保护最初能源消散法,适用于某些情况,直至任意的高序精度。非常鼓励感兴趣的读者将我们的想法应用到其他阶段方程式或梯度流模型中。