We incorporate discrete and continuous time Markov processes as building blocks into probabilistic graphical models with latent and observed variables. We introduce the automatic Backward Filtering Forward Guiding (BFFG) paradigm (Mider et al., 2021) for programmable inference on latent states and model parameters. Our starting point is a generative model, a forward description of the probabilistic process dynamics. We backpropagate the information provided by observations through the model to transform the generative (forward) model into a pre-conditional model guided by the data. It approximates the actual conditional model with known likelihood-ratio between the two. The backward filter and the forward change of measure are suitable to be incorporated into a probabilistic programming context because they can be formulated as a set of transformation rules. The guided generative model can be incorporated in different approaches to efficiently sample latent states and parameters conditional on observations. We show applicability in a variety of settings, including Markov chains with discrete state space, interacting particle systems, state space models, branching diffusions and Gamma processes.
翻译:我们将离散和连续的时间Markov进程作为组成部分纳入具有潜在和观测变量的概率性图形模型中。我们引入了自动向后过滤导导(BFFG)范式(MIder等人,2021年),用于对潜伏状态和模型参数进行可编程的推断。我们的出发点是一个基因模型,对概率性过程动态的前瞻性描述。我们支持通过观测模型提供的信息,以便将基因化(向前)模型转换成由数据指导的预有条件模型。它与已知的两种可能性高度相近。措施的后向过滤器和前向变化适合纳入概率性编程环境,因为它们可以作为一套转化规则来拟订。指导的基因模型可以纳入不同的方法,以便有效地取样潜在状态和参数,并以观察为条件。我们展示了各种环境的可适用性,包括带有离散空间的Markov链、互动粒子系统、状态空间模型、分流和伽玛过程。