Fuzzy Cognitive Maps (FCMs) are considered a soft computing technique combining elements of fuzzy logic and recurrent neural networks. They found multiple application in such domains as modeling of system behavior, prediction of time series, decision making and process control. Less attention, however, has been turned towards using them in pattern classification. In this work we propose an FCM based classifier with a fully connected map structure. In contrast to methods that expect reaching a steady system state during reasoning, we chose to execute a few FCM iterations (steps) before collecting output labels. Weights were learned with a gradient algorithm and logloss or cross-entropy were used as the cost function. Our primary goal was to verify, whether such design would result in a descent general purpose classifier, with performance comparable to off the shelf classical methods. As the preliminary results were promising, we investigated the hypothesis that the performance of $d$-step classifier can be attributed to a fact that in previous $d-1$ steps it transforms the feature space by grouping observations belonging to a given class, so that they became more compact and separable. To verify this hypothesis we calculated three clustering scores for the transformed feature space. We also evaluated performance of pipelines built from FCM-based data transformer followed by a classification algorithm. The standard statistical analyzes confirmed both the performance of FCM based classifier and its capability to improve data. The supporting prototype software was implemented in Python using TensorFlow library.


翻译:将模糊逻辑和经常神经网络的元素结合在一起的软计算技术(FCMM)被认为是一种软计算技术,它们发现在系统行为模型、时间序列预测、决策和过程控制等领域有多种应用,但较少注意在模式分类中使用这些技术。在这项工作中,我们提议了一个基于FCM的分类器,配有完全连接的地图结构。与在推理过程中预期达到稳定的系统状态的方法相反,我们选择在收集输出标签之前执行一些FCM的迭代(步骤) 。用梯度算法和loglosslorth或交叉渗透法来学习,作为成本函数。我们的首要目标是核实这种设计是否会产生与储存传统方法相仿的归性一般目的分类器。由于初步结果很有希望,我们调查了一个假设,即$-Spreform Gramer的性能可以归因于在先前的$-1CM(F)步骤中,将特性空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间空间的定位组合归归归归属于某一类,因此,它们更接近和相互支持在输版数据分析模型中也根据我们进行了数据分析分析。我们计算。我们用基于一个基于一个基于的模型进行了一种数据变换的模型的模型。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
37+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
4+阅读 · 2020年3月27日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
3+阅读 · 2018年2月22日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员