We study the fact checking problem, which aims to identify the veracity of a given claim. Specifically, we focus on the task of Fact Extraction and VERification (FEVER) and its accompanied dataset. The task consists of the subtasks of retrieving the relevant documents (and sentences) from Wikipedia and validating whether the information in the documents supports or refutes a given claim. This task is essential and can be the building block of applications such as fake news detection and medical claim verification. In this paper, we aim at a better understanding of the challenges of the task by presenting the literature in a structured and comprehensive way. Moreover, we describe the proposed methods by analyzing the technical perspectives of the different approaches and discussing the performance results on the FEVER dataset, which is the most well-studied and formally structured dataset on the fact extraction and verification task. We also conduct the largest experimental study to date on identifying beneficial loss functions for the sentence retrieval component. Our analysis indicates that sampling negative sentences is important for improving the performance and decreasing the computational complexity. Finally, we describe open issues and future challenges, and we motivate future research in the task.
翻译:我们研究事实核实问题,目的是查明某一索赔的真实性。具体地说,我们侧重于事实提取和核实(FEWER)及其配套数据集的任务。任务包括从维基百科检索相关文件(和句子)的子任务,并验证文件中的信息是否支持或否定某一索赔要求。这项任务至关重要,可以成为诸如假新闻探测和医疗索赔核实等应用的构件。在本文件中,我们的目标是通过以结构化和全面的方式介绍文献,更好地了解任务的挑战。此外,我们通过分析不同方法的技术观点和讨论FEWER数据集的性能结果来描述拟议的方法。 FEWER数据集是有关事实提取和核实任务最经过深入研究和正式结构化的数据集。我们还进行了迄今为止关于查明该句检索部分的有益损失功能的最大的实验研究。我们的分析表明,对否定的句子进行取样对于改进绩效和降低计算复杂性很重要。最后,我们描述了公开的问题和未来的挑战,并激励今后对任务进行研究。