In the study of causal inference, statisticians show growing interest in estimating and analyzing heterogeneity in causal effects in observational studies. However, there usually exists a trade-off between accuracy and interpretability when developing a desirable estimator for treatment effects. To make efforts to address the issue, we propose a non-parametric framework for estimating the Conditional Average Treatment Effect (CATE) function in this paper. The framework integrates two components: (i) leverage the joint use of propensity and prognostic scores in a matching algorithm to obtain a proxy of the heterogeneous treatment effects for each observation, (ii) utilize non-parametric regression trees to construct an estimator for the CATE function conditioning on the two scores. The method naturally stratifies treatment effects into subgroups over a 2d grid whose axis are the propensity and prognostic scores. We conduct benchmark experiments on multiple simulated data and demonstrate clear advantages of the proposed estimator over state of the art methods. We also evaluate empirical performance in real-life settings, using two observational data from a clinical trial and a complex social survey, and interpret policy implications following the numerical results


翻译:在因果推断研究中,统计人员表示对估计和分析观察研究中因果效应的异异性的兴趣越来越大,然而,在为治疗效果开发一个理想估计符时,通常在准确性和可解释性之间有一个权衡。为了努力解决这一问题,我们提议了一个非参数框架来估计本文中的条件平均治疗效果(CATE)的功能。框架包括两个组成部分:(一) 利用匹配算法中混合性分数和预测性分数的共同使用,以获得每种观测结果不同治疗效果的替代物;(二) 利用非参数回归树来构建CATE函数的估测器,对两分进行调节。这种方法自然地将治疗效果分到轴为敏性和预测分数的2个电格上的分组。我们对多个模拟数据进行基准试验,并表明拟议估计者对艺术方法现状的明显优势。我们还利用临床试验的两个观测数据和复杂的社会调查结果,评估实际生活环境中的经验表现。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
已删除
将门创投
7+阅读 · 2019年3月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月10日
Evaluating Causal Inference Methods
Arxiv
1+阅读 · 2022年2月10日
Arxiv
0+阅读 · 2022年2月8日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
已删除
将门创投
7+阅读 · 2019年3月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员