Structural and computational understanding of tensors is the driving force behind faster matrix multiplication algorithms, the unraveling of quantum entanglement, and the breakthrough on the cap set problem. Strassen's asymptotic spectra program (FOCS 1986) characterizes optimal matrix multiplication algorithms through monotone functionals. Our work advances and makes novel connections among two recent developments in the study of tensors, namely - the slice rank of tensors, a notion of rank for tensors that emerged from the resolution of the cap set problem (Ann. of Math. 2017), - and the quantum functionals of tensors (STOC 2018), monotone functionals defined as optimizations over moment polytopes. More precisely, we introduce an extension of slice rank that we call weighted slice rank and we develop a minimax correspondence between the asymptotic weighted slice rank and the quantum functionals. Weighted slice rank encapsulates different notions of bipartiteness of quantum entanglement. The correspondence allows us to give a rank-type characterization of the quantum functionals. Moreover, whereas the original definition of the quantum functionals only works over the complex numbers, this new characterization can be extended to all fields. Thereby, in addition to gaining deeper understanding of Strassen's theory for the complex numbers, we obtain a proposal for quantum functionals over other fields. The finite field case is crucial for combinatorial and algorithmic problems where the field can be optimized over.
翻译:张量的结构和计算理解是快速矩阵乘法算法、解开量子纠缠问题和突破 Cap Set 问题的推动力量。Strassen 的渐近谱计划 (FOCS 1986) 通过单调的功能特征描述最佳矩阵乘法算法。我们的工作推进和建立了在张量研究中的两个最新发展,并建立了新的联系——张量的切片秩和张量的量子函数特征 (STOC 2018),后者是在矩形上定义的单调函数特征。更确切地说,我们介绍了一个称为权重切片秩的切片秩扩展,我们发展了一种渐近权重切片秩和量子函数特征的极小极大对应关系。权重切片秩封装了不同的量子纠缠二分性概念。该对应关系允许我们给出量子函数特征的秩类型特征。此外,虽然量子函数特征的原始定义仅适用于复数,但该新特征可以扩展到所有域上。因此,除了深入理解复数情况下的 Strassen 理论外,我们还提出了其他领域的量子函数特征。有限域情况对可以优化域的组合和算法问题至关重要。