This paper presents a simple recipe to train state-of-the-art multilingual Grammatical Error Correction (GEC) models. We achieve this by first proposing a language-agnostic method to generate a large number of synthetic examples. The second ingredient is to use large-scale multilingual language models (up to 11B parameters). Once fine-tuned on language-specific supervised sets we surpass the previous state-of-the-art results on GEC benchmarks in four languages: English, Czech, German and Russian. Having established a new set of baselines for GEC, we make our results easily reproducible and accessible by releasing a cLang-8 dataset. It is produced by using our best model, which we call gT5, to clean the targets of a widely used yet noisy lang-8 dataset. cLang-8 greatly simplifies typical GEC training pipelines composed of multiple fine-tuning stages -- we demonstrate that performing a single fine-tuning step on cLang-8 with the off-the-shelf language models yields further accuracy improvements over an already top-performing gT5 model for English.
翻译:本文为培训最先进的多语种格外错误校正(GEC)模型提供了一个简单的方法。 我们首先提出一种语言不可知性方法来生成大量合成例子, 其二是使用大规模多语种模型( 高达11B参数 ) 。 一旦对特定语言的受监督数据集进行微调, 我们就会超过以前以四种语言( 英文、 捷克文、 德文和俄文) 的GEC基准的先进结果。 我们为GEC建立了一套新的基准, 我们通过发布一个 cL8 数据集, 使我们的成果更容易复制和获取。 我们使用我们称之为 gT5 的最佳模型来清理广泛使用但又吵闹的 Lang-8 数据集的目标。 cLang-8 大大简化了由多个微调阶段组成的典型的GEC培训管道。 我们证明, 与现成的语言模型一起在cLang-8上进行单一的微调,会给已经最优秀的英语GT5模型带来进一步的精确性改进。