Deep learning driven joint source-channel coding (JSCC) for wireless image or video transmission, also called DeepJSCC, has been a topic of interest recently with very promising results. The idea is to map similar source samples to nearby points in the channel input space such that, despite the noise introduced by the channel, the input can be recovered with minimal distortion. In DeepJSCC, this is achieved by an autoencoder architecture with a non-trainable channel layer between the encoder and decoder. DeepJSCC has many favorable properties, such as better end-to-end distortion performance than its separate source and channel coding counterpart as well as graceful degradation with respect to channel quality. However, due to the inherent correlation between the source sample and channel input, DeepJSCC is vulnerable to eavesdropping attacks. In this paper, we propose the first DeepJSCC scheme for wireless image transmission that is secure against eavesdroppers, called DeepJSCEC. DeepJSCEC not only preserves the favorable properties of DeepJSCC, it also provides security against chosen-plaintext attacks from the eavesdropper, without the need to make assumptions about the eavesdropper's channel condition, or its intended use of the intercepted signal. Numerical results show that DeepJSCEC achieves similar or better image quality than separate source coding using BPG compression, AES encryption, and LDPC codes for channel coding, while preserving the graceful degradation of image quality with respect to channel quality. We also show that the proposed encryption method is problem agnostic, meaning it can be applied to other end-to-end JSCC problems, such as remote classification, without modification. Given the importance of security in modern wireless communication systems, we believe this work brings DeepJSCC schemes much closer to adoption in practice.
翻译:深益源驱动联合源码( JSCC ), 用于无线图像或视频传输( 也称为 Deep JSCC ) 的深度学习源码联合编码( JSCC ) 。 深益源码或视频传输( 也称为 Deep JSC C ) 是一个最近令人感兴趣的话题, 其结果是非常有希望的结果。 设想是将类似源码样本与频道输入空间相近点的类似源码样本映射为相似的源码样本, 这样, 尽管频道引入了噪音, 输入的输入会以最小扭曲为最小。 在深线码和解码之间, 由一个具有非控制性能导码的 OutoJSC 系统来实现。 深精精精精精精精精精精精精精精精精度不仅保存深的端对端码功能, 还在频道质量变精度方面进行优美的变精度, 而且由于源精度变精度的精度操作, 深的精度也提供了安全性, 在选择的精度测试中, 系统中, 更精确的精细的精度上, 显示精度的精度的精度可以显示精度的精度, 。