A mixed graph has a set of vertices, a set of undirected egdes, and a set of directed arcs. A proper coloring of a mixed graph $G$ is a function $c$ that assigns to each vertex in $G$ a positive integer such that, for each edge $uv$ in $G$, $c(u) \ne c(v)$ and, for each arc $uv$ in $G$, $c(u) < c(v)$. For a mixed graph $G$, the chromatic number $\chi(G)$ is the smallest number of colors in any proper coloring of $G$. A directional interval graph is a mixed graph whose vertices correspond to intervals on the real line. Such a graph has an edge between every two intervals where one is contained in the other and an arc between every two overlapping intervals, directed towards the interval that starts and ends to the right. Coloring such graphs has applications in routing edges in layered orthogonal graph drawing according to the Sugiyama framework; the colors correspond to the tracks for routing the edges. We show how to recognize directional interval graphs, and how to compute their chromatic number efficiently. On the other hand, for mixed interval graphs, i.e., graphs where two intersecting intervals can be connected by an edge or by an arc in either direction arbitrarily, we prove that computing the chromatic number is NP-hard.


翻译:混合图有一套顶点、 一组未方向的顶点和一组定向弧。 混合图$G$的正确颜色是一个函数 $c$, 给每个顶点指定一个正整数, 以美元表示每个边缘$uv$$$$$$, 美元( u)\ ne c( v) 美元, 以美元计, 美元( u) < c( v) 美元。 对于混合图$ G$, 色数$\ chi( G) $( $) 是任何适当颜色中最小的颜色数 $G$。 方向图是一个混合图, 其顶点与实际线上的间距相符 $G$$, 美元( u) c( un) c( v) 美元), 而对于每两个折点的折点之间有一个边缘, 以美元( $G$( $) $( u) $( u) < c( c)( c) < c( v) ) ) ) river( c( c( viver) river) river) river( g) rut) $) $( ) $( $) $) $( $) $( $) $) ) $( $( g) $) $( g) $( g) $) $( $( $( g) $) $( $) $( g) $( g) $( g) ) $) ) ) $( $( $( g) ) ) $( $( ) ) $( $( $) ) $( $) ) ) $( ) $( $) $) $) $) $( $( $( $) $) $) $( $) $( $) $) ) $( ) $) ) $( $( ) $( $( $) $) $) $( $) $

0
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
124+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月17日
Arxiv
0+阅读 · 2022年10月14日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
11+阅读 · 2020年12月2日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员