We present InferWiki, a Knowledge Graph Completion (KGC) dataset that improves upon existing benchmarks in inferential ability, assumptions, and patterns. First, each testing sample is predictable with supportive data in the training set. To ensure it, we propose to utilize rule-guided train/test generation, instead of conventional random split. Second, InferWiki initiates the evaluation following the open-world assumption and improves the inferential difficulty of the closed-world assumption, by providing manually annotated negative and unknown triples. Third, we include various inference patterns (e.g., reasoning path length and types) for comprehensive evaluation. In experiments, we curate two settings of InferWiki varying in sizes and structures, and apply the construction process on CoDEx as comparative datasets. The results and empirical analyses demonstrate the necessity and high-quality of InferWiki. Nevertheless, the performance gap among various inferential assumptions and patterns presents the difficulty and inspires future research direction. Our datasets can be found in https://github.com/TaoMiner/inferwiki
翻译:我们提出“InferWiki”,即知识图完成数据集(KGC),该数据集改进了在推断能力、假设和模式方面的现有基准。首先,每个测试样本在培训数据集中的支持性数据下是可预测的。为了确保它,我们提议使用规则制导的火车/测试生成,而不是常规的随机分割。第二,InferWiki在开放世界假设之后发起评估,并通过提供人工附加注释的负和未知三重数据,改善封闭世界假设的必然难度。第三,我们包括全面评估的各种推论模式(例如推理路径长度和类型)。在实验中,我们将两个不同大小和结构的推论维基的设置加以调整,并将CoDEx的构建过程用作比较数据集。结果和经验分析表明InferWiki的必要性和高质量。然而,各种推论假设和模式之间的性能差距显示了困难和启发了未来的研究方向。我们的数据集可以在 https://github.com/TaoMiner/inferwiki中找到。