Social science studies dealing with control in networks typically resort to heuristics or describing the static control distribution. Optimal policies, however, require interventions that optimize control over a socioeconomic network subject to real-world constraints. We integrate optimisation tools from deep-learning with network science into a framework that is able to optimize such interventions in real-world networks. We demonstrate the framework in the context of corporate control, where it allows to characterize the vulnerability of strategically important corporate networks to sensitive takeovers, an important contemporaneous policy challenge. The framework produces insights that are relevant for governing real-world socioeconomic networks, and opens up new research avenues for improving our understanding and control of such complex systems.
翻译:处理网络控制的社会科学研究通常采用累进论或描述静态控制分布。然而,最佳政策要求采取干预措施,优化对受现实世界制约的社会经济网络的控制。我们将深层学习的优化工具与网络科学纳入一个能够在现实世界网络中优化此类干预的框架。我们从公司控制的角度展示了框架,从而可以描述具有战略重要性的公司网络易受敏感接管的脆弱性,这是一个重要的同时期政策挑战。框架提出了与管理现实世界社会经济网络相关的深刻见解,并为改进我们对此类复杂系统的了解和控制开辟了新的研究途径。