It is essential but challenging to predict future trajectories of various agents in complex scenes. Whether it is internal personality factors of agents, interactive behavior of the neighborhood, or the influence of surroundings, it will have an impact on their future behavior styles. It means that even for the same physical type of agents, there are huge differences in their behavior preferences. Although recent works have made significant progress in studying agents' multi-modal plannings, most of them still apply the same prediction strategy to all agents, which makes them difficult to fully show the multiple styles of vast agents. In this paper, we propose the Multi-Style Network (MSN) to focus on this problem by divide agents' preference styles into several hidden behavior categories adaptively and train each category's prediction network separately, therefore giving agents all styles of predictions simultaneously. Experiments demonstrate that our deterministic MSN-D and generative MSN-G outperform many recent state-of-the-art methods and show better multi-style characteristics in the visualized results.


翻译:预测各种代理人在复杂场景中的未来轨迹固然重要,但具有挑战性。 无论这是代理人的内部个性因素、邻居的互动行为,还是周围环境的影响,它都会对其未来的行为风格产生影响。 这意味着即使对同样的体型代理人来说,它们的行为偏好也有巨大的差异。虽然最近的工作在研究代理人的多模式规划方面取得了显著进展,但大多数在研究代理人的多模式规划方面仍然对所有代理人采用相同的预测战略,这使得它们难以充分显示广大代理人的多种风格。在本文件中,我们建议多窗口网络(MSN)通过将代理人的偏好风格分为若干隐藏的行为类别,根据适应性分别培训每一类的预测网络,从而使各种代理人同时提供所有类型的预测。实验表明,我们的确定性MSN-D和基因化的MSN-G方法超越了许多最近的状态技术方法,并在可视结果中显示更好的多模式特征。

0
下载
关闭预览

相关内容

MSN:International Conference on Mobile Ad-hoc and Sensor Networks。 Explanation:移动自组织和传感器网络国际会议。 Publisher:IEEE。 SIT: https://dblp.uni-trier.de/db/conf/msn/
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Arxiv
6+阅读 · 2019年3月19日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Top
微信扫码咨询专知VIP会员