In order to reach human performance on complexvisual tasks, artificial systems need to incorporate a sig-nificant amount of understanding of the world in termsof macroscopic objects, movements, forces, etc. Inspiredby work on intuitive physics in infants, we propose anevaluation benchmark which diagnoses how much a givensystem understands about physics by testing whether itcan tell apart well matched videos of possible versusimpossible events constructed with a game engine. Thetest requires systems to compute a physical plausibilityscore over an entire video. It is free of bias and cantest a range of basic physical reasoning concepts. Wethen describe two Deep Neural Networks systems aimedat learning intuitive physics in an unsupervised way,using only physically possible videos. The systems aretrained with a future semantic mask prediction objectiveand tested on the possible versus impossible discrimi-nation task. The analysis of their results compared tohuman data gives novel insights in the potentials andlimitations of next frame prediction architectures.


翻译:为了在复杂的视觉任务上达到人类的性能,人造系统需要结合对世界的宏观物体、运动、力量等方面的大量了解。 受婴儿直觉物理学工作的启发,我们建议了一个评价基准,通过测试一个特定系统是否能够分辨出与以游戏引擎建造的可能和不可能的事件相匹配的视频,来判断一个特定系统对物理学的了解程度。这项测试需要用系统来计算整个视频上的物理光谱。它没有偏见,可以测试一系列基本的物理推理概念。我们然后描述两个深神经网络系统,目的是以不受监督的方式学习直觉物理学,只使用物理上可能拍摄的视频。这些系统经过训练,将未来使用一个语义面具的预测目标,并测试了可能的和不可能的矛盾性任务。对结果的分析与人类数据进行比较后,就下一个框架预测结构的潜力和局限性提供了新的洞察力。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Reasoning on Knowledge Graphs with Debate Dynamics
Arxiv
14+阅读 · 2020年1月2日
Physical Primitive Decomposition
Arxiv
4+阅读 · 2018年9月13日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员