We will extend the well-known Church encoding of Boolean logic into $\lambda$-calculus to an encoding of McCarthy's $3$-valued logic into a suitable infinitary extension of $\lambda$-calculus that identifies all unsolvables by $\bot$, where $\bot$ is a fresh constant. This encoding refines to $n$-valued logic for $n\in\{4,5\}$. Such encodings also exist for Church's original $\lambda\mathbf{I}$-calculus. By way of motivation we consider Russell's paradox, exploiting the fact that the same encoding allows us also to calculate truth values of infinite closed propositions in this infinitary setting.
翻译:我们将将众所周知的布林逻辑的教会编码扩展为 $ lambda$- calculus, 将麦卡锡的3美元价值逻辑编码为 $ lambda$- calculus 的完美无限扩展为 $ lambda$- calculus, 该扩展为 $\ bot$, 美元是一个新的常数。 该编码将 $ bot$ 推到 $ $ lambda$ $ 4, 5 $ 。 这些编码也存在于 教会的原始的 $\ lambda\ mathbf{I} $- calculus 。 作为动机,我们考虑罗素的悖论, 利用该编码也让我们计算出这个无限封闭的主张的真理值。