In this paper we describe a combined combinatorial/numerical approach to studying equilibria and bifurcations in network models arising in Systems Biology. Often interactions are only coarsely known in terms of a regulatory or signalling network topology. Consequently, ODE models of the dynamics suffer from high dimensional parameters which presents a significant obstruction to studying the global dynamics via numerical methods. Given a network topology describing state variables which regulate one another via monotone and bounded functions, we first use the Dynamic Signatures Generated by Regulatory Networks (DSGRN) software to obtain a combinatorial description which summarizes the dynamics. This summary is coarse but global and we use this information as a first pass to identify "interesting" subsets of parameters in which to focus. We construct an associated ODE model with high parameter dimension using our Network Dynamics Modeling and Analysis (NDMA) Python library. We introduce algorithms for efficiently investigating the dynamics in these ODE models restricted to these parameter subsets. Finally, we perform a statistical validation of the method and several interesting dynamical applications including finding saddle-node bifurcations in a 54 parameter model.
翻译:在本文中,我们描述了一种在系统生物学中产生的网络模型中研究平衡和分离的组合/数字综合方法。互动通常只是以监管或信号网络地形学来粗略地了解。因此,动态的ODE模型受到高维参数的影响,这些参数对通过数字方法研究全球动态有很大的阻碍。鉴于网络地形学描述了通过单调和捆绑功能来调节彼此的状态变量,我们首先使用监管网络软件生成的动态签名软件来获得一个组合描述,以概述动态。本摘要粗略但全球化,我们使用这一信息作为第一个传递,以确定“感兴趣”的参数组,以聚焦。我们利用我们的网络动态模型和分析(NDMA) Python 图书馆,构建了一个相关的高参数参数模型。我们引入了算法,以有效调查这些ODE模型中的动态,这些模型仅限于这些参数组。最后,我们从统计角度验证了该方法,并用若干有趣的动态应用程序,包括查找54个参数模型中的轮廓。