Efficient deployment of Deep Neural Networks (DNNs) on edge devices (i.e., FPGAs and mobile platforms) is very challenging, especially under a recent witness of the increasing DNN model size and complexity. Although various optimization approaches have been proven to be effective in many DNNs on edge devices, most state-of-the-art work focuses on ad-hoc optimizations, and there lacks a thorough study to comprehensively reveal the potentials and constraints of different edge devices when considering different optimizations. In this paper, we qualitatively and quantitatively compare the energy-efficiency of FPGA-based and mobile-based DNN executions, and provide detailed analysis.


翻译:在边缘装置(即FPGAs和移动平台)上有效部署深神经网络(DNNs)非常困难,特别是最近目睹DNN模型规模和复杂性日益增大的一个实例,尽管事实证明,在许多边缘装置上的DNNs中,各种优化办法是有效的,但大多数最先进的工作侧重于临时优化,而且缺乏全面研究,以全面揭示不同边缘装置在考虑不同优化时的潜力和制约因素。

0
下载
关闭预览

相关内容

【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
【北京大学】面向5G的命名数据网络物联网研究综述
专知会员服务
36+阅读 · 2020年4月26日
深度神经网络模型压缩与加速综述
专知会员服务
128+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
硬件加速神经网络综述
计算机研究与发展
26+阅读 · 2019年2月1日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
15+阅读 · 2020年2月6日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
硬件加速神经网络综述
计算机研究与发展
26+阅读 · 2019年2月1日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员