Fairness is a crucial property in recommender systems. Although some online services have adopted fairness aware systems recently, many other services have not adopted them yet. In this work, we propose methods to enable the users to build their own fair recommender systems. Our methods can generate fair recommendations even when the service does not (or cannot) provide fair recommender systems. The key challenge is that a user does not have access to the log data of other users or the latent representations of items. This restriction prohibits us from adopting existing methods designed for service providers. The main idea is that a user has access to unfair recommendations shown by the service provider. Our methods leverage the outputs of an unfair recommender system to construct a new fair recommender system. We empirically validate that our proposed method improves fairness substantially without harming much performance of the original unfair system.
翻译:公平是建议者系统中的一个关键属性。 虽然一些在线服务最近采用了公平意识系统, 但许多其他服务尚未采用。 在这项工作中,我们提出方法,使用户能够建立自己的公平建议系统。 我们的方法可以产生公平的建议,即使服务不提供(或不能提供)公平建议系统。 关键的挑战在于用户不能获取其他用户的日志数据或项目的潜在表现。 这一限制禁止我们采用为服务提供者设计的现有方法。 主要的理念是用户可以获取服务提供者提出的不公平建议。 我们的方法利用不公平建议系统的产出来建立一个新的公平建议系统。 我们的经验证明,我们提出的方法在不损及原本不公平系统的许多业绩的情况下大大地提高了公平性。