The COVID-19 pandemic created a deluge of questionable and contradictory scientific claims about drug efficacy -- an "infodemic" with lasting consequences for science and society. In this work, we argue that NLP models can help domain experts distill and understand the literature in this complex, high-stakes area. Our task is to automatically identify contradictory claims about COVID-19 drug efficacy. We frame this as a natural language inference problem and offer a new NLI dataset created by domain experts. The NLI framing allows us to create curricula combining existing datasets and our own. The resulting models are useful investigative tools. We provide a case study of how these models help a domain expert summarize and assess evidence concerning remdisivir and hydroxychloroquine.
翻译:COVID-19大流行造成了关于药物功效的令人怀疑和自相矛盾的科学主张的堆积如山 -- -- 一种对科学和社会具有持久影响的“信息”现象。在这项工作中,我们认为,NLP模型可以帮助域专家提炼和理解这个复杂、高吸量领域的文献。我们的任务是自动查明关于COVID-19药物功效的自相矛盾的主张。我们将此设计成一种自然语言推论问题,并提供由域专家创建的新的NLI数据集。NLI框架使我们能够将现有数据集和我们自己的数据集合并成课程。由此形成的模型是有用的调查工具。我们提供了这些模型如何帮助域专家总结和评估关于再发菌和氢氧基氯的证据的案例研究。