Optimal transport (OT) compares probability distributions by computing a meaningful alignment between their samples. CO-optimal transport (COOT) takes this comparison further by inferring an alignment between features as well. While this approach leads to better alignments and generalizes both OT and Gromov-Wasserstein distances, we provide a theoretical result showing that it is sensitive to outliers that are omnipresent in real-world data. This prompts us to propose unbalanced COOT for which we provably show its robustness to noise in the compared datasets. To the best of our knowledge, this is the first such result for OT methods in incomparable spaces. With this result in hand, we provide empirical evidence of this robustness for the challenging tasks of heterogeneous domain adaptation with and without varying proportions of classes and simultaneous alignment of samples and features across single-cell measurements.
翻译:最佳运输(OT) 比较概率分布, 计算其样本之间有意义的匹配。 CO- 最佳运输(COOT) 进一步比较这一比较, 并推断各种特征之间的匹配。 虽然这种方法可以改善OT和Gromov- Wasserstein距离的对齐和概括,但我们提供了一种理论结果,表明它对现实世界数据中普遍存在的外部值十分敏感。 这促使我们提出不平衡的COOT, 从而可以明显地显示其在比较数据集中的噪音的稳健性。 据我们所知,这是在不相容空间中采用OT方法的首个此类结果。 通过这一结果,我们掌握了实证证据,证明这种稳健性对于不同领域适应具有挑战性的任务来说是具有挑战性的,而且没有不同程度的分类以及单细胞测量中样本和特征的同步性。