Odds ratios or p_values from individual observational studies can be combined to examine a common cause_effect research question in meta_analysis. However, reliability of individual studies used in meta_analysis should not be taken for granted as claimed cause_effect associations may not reproduce. An evaluation was undertaken on meta_analysis of base papers examining gas stove cooking, including nitrogen dioxide, NO2, and childhood asthma and wheeze associations. Numbers of hypotheses tested in 14 of 27 base papers, 52 percent, used in meta_analysis of asthma and wheeze were counted. Test statistics used in the meta_analysis, 40 odds ratios with 95 percent confidence limits, were converted to p_values and presented in p_value plots. The median and interquartile range of possible numbers of hypotheses tested in the 14 base papers was 15,360, 6,336_49,152. None of the 14 base papers made mention of correcting for multiple testing, nor was any explanation offered if no multiple testing procedure was used. Given large numbers of hypotheses available, statistics drawn from base papers and used for meta-analysis are likely biased. Even so, p-value plots for gas stove_current asthma and gas stove_current wheeze associations show randomness consistent with unproven gas stove harms. The meta-analysis fails to provide reliable evidence for public health policy making on gas stove harms to children in North America. NO2 is not established as a biologically plausible explanation of a causal link with childhood asthma. Biases_multiple testing and p-hacking_cannot be ruled out as explanations for a gas stove_current asthma association claim. Selective reporting is another bias in published literature of gas stove_childhood respiratory health studies. Keywords gas stove, asthma, meta-analysis, p-value plot, multiple testing, p_hacking
翻译:暂无翻译