In order to save computing power yet enhance safety, there is a strong intention for autonomous vehicles (AVs) in future to drive collaboratively by sharing sensory data and computing results among neighbors. However, the intense collaborative computing and data transmissions among unknown others will inevitably introduce severe security concerns. Aiming at addressing security concerns in future AVs, in this paper, we develop SPAD, a secured framework to forbid free-riders and {promote trustworthy data dissemination} in collaborative autonomous driving. Specifically, we first introduce a publish/subscribe framework for inter-vehicle data transmissions{. To defend against free-riding attacks,} we formulate the interactions between publisher AVs and subscriber AVs as a vehicular publish/subscribe game, {and incentivize AVs to deliver high-quality data by analyzing the Stackelberg equilibrium of the game. We also design a reputation evaluation mechanism in the game} to identify malicious AVs {in disseminating fake information}. {Furthermore, for} lack of sufficient knowledge on parameters of {the} network model and user cost model {in dynamic game scenarios}, a two-tier reinforcement learning based algorithm with hotbooting is developed to obtain the optimal {strategies of subscriber AVs and publisher AVs with free-rider prevention}. Extensive simulations are conducted, and the results validate that our SPAD can effectively {prevent free-riders and enhance the dependability of disseminated contents,} compared with conventional schemes.


翻译:为了节省计算资源并提高安全性,未来自主车辆(AVs)之间存在强烈意愿进行协作驾驶,通过在邻近车辆之间共享传感数据和计算结果来增强安全性。然而,未知的交互式计算和数据传输将不可避免地引入严重的安全问题。针对未来AV的安全问题,本文开发了SPAD,这是一个安全框架,旨在禁止搭便车并促进公正的数据传播。具体来说,我们首先介绍了一个用于车辆间数据传输的发布/订阅框架。为了防范搭便车攻击,我们将发布者AV和订阅者AV之间的交互行为定义为车辆发布/订阅博弈,并通过分析博弈的Stackelberg均衡来激励AV提供高质量的数据。我们还在游戏中设计了声誉评估机制,以识别在传播虚假信息方面具有恶意的AV。此外,在动态游戏场景中由于缺乏对网络模型参数和用户成本模型的足够了解,我们开发了一种基于两层强化学习算法的hotbooting来获取具有防止搭便车策略的订阅者AV和发布者AV的最优策略。进行了广泛的模拟,并与传统方案进行了验证,结果表明我们的SPAD可以有效防止搭便车并增强传播内容的可靠性。

0
下载
关闭预览

相关内容

多智能体顶级会议AAMAS2022最佳论文
专知会员服务
61+阅读 · 2022年5月15日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
11+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
11+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员