We introduce the anytime-valid (AV) logrank test, a version of the logrank test that provides type-I error guarantees under optional stopping and optional continuation. The test is sequential without the need to specify a maximum sample size or stopping rule, and allows for cumulative meta-analysis with type-I error control. The method can be extended to define anytime-valid confidence intervals. The logrank test is an instance of the martingale tests based on E-variables that have been recently developed. We demonstrate type-I error guarantees for the test in a semiparametric setting of proportional hazards and show how to extend it to ties, Cox' regression and confidence sequences. Using a Gaussian approximation on the logrank statistic, we show that the AV logrank test (which itself is always exact) has a similar rejection region to O'Brien-Fleming alpha-spending but with the potential to achieve 100% power by optional continuation. Although our approach to study design requires a larger sample size, the *expected* sample size is competitive by optional stopping.
翻译:我们引入了任何时间有效(AV)洛格兰克检验,这是洛格兰克检验的一种版本,可在选择性终止和选择性延续的情况下提供Ⅰ型错误控制。该测试是顺序的,不需要指定最大样本大小或停止规则,并允许进行累积的元分析,并且有类型I错误控制。该方法可以扩展以定义任何时候有效的置信区间。洛格兰克检验是基于最近开发的E-变量的鞅测试的一个实例。我们证明了该测试在比例风险的半参数设置中具有类型I错误保证,并展示了如何将其扩展到相关系数、Cox的回归和置信序列。使用对数秩和统计量的高斯逼近,我们展示了AV洛格兰克检验(其本身总是精确的)具有类似于O'Brien-Flemming alpha-spending的拒绝区域,但具有通过可选续行达到100%功效的潜力。虽然我们的研究设计需要更大的样本大小,但通过选择性终止,期望样本大小是有竞争力的。