The determinantal complexity of a polynomial $P \in \mathbb{F}[x_1, \ldots, x_n]$ over a field $\mathbb{F}$ is the dimension of the smallest matrix $M$ whose entries are affine functions in $\mathbb{F}[x_1, \ldots, x_n]$ such that $P = Det(M)$. We prove that the determinantal complexity of the polynomial $\sum_{i = 1}^n x_i^n$ is at least $1.5n - 3$. For every $n$-variate polynomial of degree $d$, the determinantal complexity is trivially at least $d$, and it is a long standing open problem to prove a lower bound which is super linear in $\max\{n,d\}$. Our result is the first lower bound for any explicit polynomial which is bigger by a constant factor than $\max\{n,d\}$, and improves upon the prior best bound of $n + 1$, proved by Alper, Bogart and Velasco [ABV17] for the same polynomial.


翻译:以 $mathbb{F} [x_1,\ ldots, x_n] 美元计算, 美元是最小的基质的维度, 美元是美元= mathbb{F} [x_1,\ldots, x_n] 美元, 美元= dt(M)$。 我们证明, 美元= = mathbb{F} [x_1, 美元, 美元= mathbb{F} 美元, 美元, x_n] 美元在字段中, 美元= 美元, 美元= 1 ⁇ n x_ i} 美元, 美元的确定性复杂性至少是1.5美元 - 3 美元。 对于每1 美元 美元, 美元变量的确定性复杂性是微不足道的, 美元, 美元是一个长期存在的问题, 要证明一个在 $\ max ⁇, 美元, x_ 美元 美元 美元 。 我们的结果是, 任何明确的多元的基质都比 $\ max, per_ 美元 美元 美元 和 vial vial 17 上 美元, 美元, 美元, 美元 的比 最高基 17 被 已证明 美元 。

0
下载
关闭预览

相关内容

专知会员服务
75+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
MIT新书《强化学习与最优控制》
专知会员服务
270+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年4月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年2月3日
Arxiv
0+阅读 · 2022年2月3日
Arxiv
0+阅读 · 2022年2月3日
Arxiv
0+阅读 · 2022年2月2日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年4月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员