Bayesian optimization (BO) is an efficient and flexible global optimization framework that is applicable to a very wide range of engineering applications. To leverage the capability of the classical BO, many extensions, including multi-objective, multi-fidelity, parallelization, latent-variable model, have been proposed to improve the limitation of the classical BO framework. In this work, we propose a novel multi-objective (MO) extension, called srMO-BO-3GP, to solve the MO optimization problems in a sequential setting. Three different Gaussian processes (GPs) are stacked together, where each of the GP is assigned with a different task: the first GP is used to approximate the single-objective function, the second GP is used to learn the unknown constraints, and the third GP is used to learn the uncertain Pareto frontier. At each iteration, a MO augmented Tchebycheff function converting MO to single-objective is adopted and extended with a regularized ridge term, where the regularization is introduced to smoothen the single-objective function. Finally, we couple the third GP along with the classical BO framework to promote the richness and diversity of the Pareto frontier by the exploitation and exploration acquisition function. The proposed framework is demonstrated using several numerical benchmark functions, as well as a thermomechanical finite element model for flip-chip package design optimization.


翻译:Bayesian优化(BO)是一个高效和灵活的全球优化框架,适用于范围很广的工程应用。为了利用古典BO的能力,提出了许多扩展,包括多目标、多信仰、平行、潜在可变模式,以改进古典BO框架的限制。在这项工作中,我们提议了一个新的多目标扩展,称为SrMO-BO-3GP,以在顺序环境中解决MO优化问题。三个不同的Gossian流程(GPs)被叠叠叠在一起,其中每个GP都承担不同的任务:第一次GP用来接近单一目标功能,第二次GP用来学习未知的限制,第三次GP用来学习不确定的Pareto前沿。在每次迭代中,一个将MO转换成单一目标的增强型功能被采纳,并随着一个正规化的脊柱化术语而扩展,在此过程中,引入了三个不同的GPA进程与传统的BO框架一起用于近似单一目标功能的近似组合,用来了解未知的制约,第二个GPA用来学习未知的制约,而第三个GPA用于学习不确定的边框框框框框。在利用一个成熟的勘探功能,通过一个成熟的深度的深度的勘探和硬度的模型的模型的模型,将Mexprideal-roupment 的功能作为若干,将一个成熟的深度的深度的深度的深度的深度的复制到一个成熟到一个成熟的深度的深度的深度的深度的深度的深度的模型的模型的模型的功能,以展示到一个。

0
下载
关闭预览

相关内容

专知会员服务
20+阅读 · 2021年9月16日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
自动结构变分推理,Automatic structured variational inference
专知会员服务
40+阅读 · 2020年2月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
6+阅读 · 2021年6月24日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员