We present $\cal L$, an extension of Parigot's $\lambda\mu$-calculus by adding negation as a type constructor, together with syntactic constructs that represent negation introduction and elimination. We will define a notion of reduction that extends $\lambda\mu$'s reduction system with two new reduction rules, and show that the system satisfies subject reduction. Using Aczel's generalisation of Tait and Martin-L\"of's notion of parallel reduction, we show that this extended reduction is confluent. Although the notion of type assignment has its limitations with respect to representation of proofs in natural deduction with implication and negation, we will show that all propositions that can be shown in there have a witness in $\cal L$. Using Girard's approach of reducibility candidates, we show that all typeable terms are strongly normalisable, and conclude the paper by showing that type assignment for $\cal L$ enjoys the principal typing property.
翻译:我们提出 $\cal L$,这是 Parigot 的 $\lambda\mu$-演算的扩展,通过添加否定作为一种类型构造器,并引入表示否定引入和消除的语法构造。我们将定义一种约化的概念,它通过两个新的规约规则扩展了 $\lambda\mu$ 的规约系统,并展示该系统满足主题约简。使用 Aczel 对 Tait 和 Martin-Löf 并行约化概念的推广,我们展示了这种扩展约化是合流的。尽管类型归整的赋值概念在表示自然演绎中的蕴含和否定证明方面存在局限性,但我们将证明,所有可以在自然演绎中表示的命题在 $\cal L$ 中都有对应的见证。使用 Girard 的可约性函数方法,我们证明所有可类型化的术语都是强规范化的,最后展示 $\cal L$ 的类型赋值是具有主类型特性的。