Interactions among humans on social media often convey intentions behind their actions, yielding a psychological language resource for Mental Health Analysis (MHA) of online users. The success of Computational Intelligence Techniques (CIT) for inferring mental illness from such social media resources points to NLP as a lens for causal analysis and perception mining. However, we argue that more consequential and explainable research is required for optimal impact on clinical psychology practice and personalized mental healthcare. To bridge this gap, we posit two significant dimensions: (1) Causal analysis to illustrate a cause and effect relationship in the user generated text; (2) Perception mining to infer psychological perspectives of social effects on online users intentions. Within the scope of Natural Language Processing (NLP), we further explore critical areas of inquiry associated with these two dimensions, specifically through recent advancements in discourse analysis. This position paper guides the community to explore solutions in this space and advance the state of practice in developing conversational agents for inferring mental health from social media. We advocate for a more explainable approach toward modeling computational psychology problems through the lens of language as we observe an increased number of research contributions in dataset and problem formulation for causal relation extraction and perception enhancements while inferring mental states.


翻译:人类在社交媒体上的相互作用往往传达行动背后的意图,为在线用户的心理健康分析(MHA)提供心理语言资源,为在线用户的心理健康分析(MHA)提供心理语言资源。计算情报技术(CIT)从社交媒体资源中推断精神疾病的成功表明,国家语言实验室作为因果分析和认知挖掘的透镜,认为需要进行更具有影响和解释性的研究,以便对临床心理学实践和个人心理保健产生最佳影响。为了缩小这一差距,我们提出两个重要方面:(1) 进行因果关系分析,以说明用户生成的文本中的原因和影响关系;(2) 进行认知挖掘,以推断社会对在线用户意图的影响的心理观点。在自然语言处理(NLP)范围内,我们进一步探索与这两个层面相关的关键调查领域,特别是通过最近对讨论分析的进展。本立场文件指导社区探索这一空间的解决方案,并推进从社会媒体中建立判断心理健康的谈话媒介的做法。我们主张通过语言透镜来更解释计算心理学问题的模型,因为我们观察了在增强和构建因果关系方面的研究贡献的数量。

1
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月21日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
10+阅读 · 2020年11月26日
Arxiv
92+阅读 · 2020年2月28日
Arxiv
10+阅读 · 2019年2月19日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员