In network coding, a flag code is a set of sequences of nested subspaces of $\mathbb{F}_q^n$, being $\mathbb{F}_q$ the finite field with $q$ elements. Flag codes defined as orbits of a cyclic subgroup of the general linear group acting on flags of $\mathbb{F}_q^n$ are called cyclic orbit flag codes. Inspired by the ideas in arXiv:1403.1218, we determine the cardinality of a cyclic orbit flag code and provide bounds for its distance with the help of the largest subfield over which all the subspaces of a flag are vector spaces (the best friend of the flag). Special attention is paid to two specific families of cyclic orbit flag codes attaining the extreme possible values of the distance: Galois cyclic orbit flag codes and optimum distance cyclic orbit flag codes. We study in detail both classes of codes and analyze the parameters of the respective subcodes that still have a cyclic orbital structure.
翻译:在网络编码中,国旗代码是一组嵌入子空间序列的序列,即$mathbb{F ⁇ q ⁇ n$,是带有美元元素的限定字段$mathb{F ⁇ q ⁇ q$。旗帜代码的定义是使用$mathb{F ⁇ q ⁇ n$国旗的普通线性组的圆形分组的轨道轨道。根据arxiv:1403.1218中的想法,我们确定了循环轨道国旗代码的基点,并在最大子字段的帮助下提供了其距离的界限,该子字段是国旗上所有子空间的载体空间(国旗最好的朋友)。特别注意两组周期轨道国旗代码达到最可能的距离值:Galois环绕轨道国旗代码和最佳距离环绕轨道旗帜代码。我们详细研究了两个代码的类别,并分析了仍然拥有环绕轨道结构的各子代码的参数。