A Cartesian decomposition of a coherent configuration $\cal X$ is defined as a special set of its parabolics that form a Cartesian decomposition of the underlying set. It turns out that every tensor decomposition of $\cal X$ comes from a certain Cartesian decomposition. It is proved that if the coherent configuration $\cal X$ is thick, then there is a unique maximal Cartesian decomposition of $\cal X$, i.e., there is exactly one internal tensor decomposition of $\cal X$ into indecomposable components. In particular, this implies an analog of the Krull--Schmidt theorem for the thick coherent configurations. A polynomial-time algorithm for finding the maximal Cartesian decomposition of a thick coherent configuration is constructed.
翻译:X$ 的整齐配置的笛卡尔分解被定义为构成底部组分解的一套特殊抛物线。 结果是, X$ 的每个发光分解都来自某种笛卡尔分解。 事实证明, 如果一个整齐配置 $ cal X$ 的厚度, 那么就有一个独特的最大量的笛卡尔分解 $ cal X$, 也就是说, 完全存在一个内部单向分解 $cal X$ 的分解成无法解析的构件。 特别是, 这意味着要模拟一个厚整齐配置的克鲁尔- 施密特定理器。 构建了一个用于寻找厚重连结配置最大量的卡尔泰因分解的多元时间算法 。