Recommender Systems (RS) aim to provide personalized suggestions of items for users against consumer over-choice. Although extensive research has been conducted to address different aspects and challenges of RS, there still exists a gap between academic research and industrial applications. Specifically, most of the existing models still work in an offline manner, in which the recommender is trained on a large static training set and evaluated on a very restrictive testing set in a one-time process. RS will stay unchanged until the next batch retrain is performed. We frame such RS as Batch Update Recommender Systems (BURS). In reality, they have to face the challenges where RS are expected to be instantly updated with new data streaming in, and generate updated recommendations for current user activities based on the newly arrived data. We frame such RS as Incremental Update Recommender Systems (IURS). In this article, we offer a systematic survey of incremental update for neural recommender systems. We begin the survey by introducing key concepts and formulating the task of IURS. We then illustrate the challenges in IURS compared with traditional BURS. Afterwards, we detail the introduction of existing literature and evaluation issues. We conclude the survey by outlining some prominent open research issues in this area.


翻译:建议系统(RS)旨在为用户提供个人化的物品建议,以对付消费者过度选择。虽然已经进行了广泛的研究,以解决塞族共和国的不同方面和挑战,但学术研究和工业应用之间仍然存在差距。具体地说,大多数现有模式仍然以离线方式运作,其中建议者接受大规模静态培训,在一次性进程中对非常严格的测试集进行评估。RS将保持不变,直到进行下一批再培训为止。我们设置了RS,如批量更新建议系统(BURS)等。在现实中,它们必须面对挑战,即预期RS将立即通过新的数据流来更新,并根据新获得的数据为当前用户活动提出更新建议。我们以递增更新建议系统(IURS)为框架。在本篇文章中,我们系统地调查神经系统递增更新情况,我们开始采用关键概念,并拟订IURS的任务。我们然后说明IURS与传统的两年期更新建议系统(BURS)相比的挑战。随后,我们详细介绍了现有文献的介绍和评估问题。我们通过突出的研究领域来结束这一调查。</s>

0
下载
关闭预览

相关内容

推荐系统,是指根据用户的习惯、偏好或兴趣,从不断到来的大规模信息中识别满足用户兴趣的信息的过程。推荐推荐任务中的信息往往称为物品(Item)。根据具体应用背景的不同,这些物品可以是新闻、电影、音乐、广告、商品等各种对象。推荐系统利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。随着电子商务规模的不断扩大,商品个数和种类快速增长,顾客需要花费大量的时间才能找到自己想买的商品。这种浏览大量无关的信息和产品过程无疑会使淹没在信息过载问题中的消费者不断流失。为了解决这些问题,个性化推荐系统应运而生。个性化推荐系统是建立在海量数据挖掘基础上的一种高级商务智能平台,以帮助电子商务网站为其顾客购物提供完全个性化的决策支持和信息服务。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
KDD2020推荐系统论文聚焦
机器学习与推荐算法
15+阅读 · 2020年6月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】RNN最新研究进展综述
机器学习研究会
25+阅读 · 2018年1月6日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2023年2月7日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关资讯
KDD2020推荐系统论文聚焦
机器学习与推荐算法
15+阅读 · 2020年6月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】RNN最新研究进展综述
机器学习研究会
25+阅读 · 2018年1月6日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员