We introduce a new approach for abstractive text summarization, Topic-Guided Abstractive Summarization, which calibrates long-range dependencies from topic-level features with globally salient content. The idea is to incorporate neural topic modeling with a Transformer-based sequence-to-sequence (seq2seq) model in a joint learning framework. This design can learn and preserve the global semantics of the document, which can provide additional contextual guidance for capturing important ideas of the document, thereby enhancing the generation of summary. We conduct extensive experiments on two datasets and the results show that our proposed model outperforms many extractive and abstractive systems in terms of both ROUGE measurements and human evaluation. Our code is available at: https://github.com/chz816/tas.
翻译:我们引入一种新的抽象文本总结方法,即专题指导抽象摘要,从具有全球显著内容的专题层面特征中校准长期依赖性,目的是将神经专题模型与基于变异序列至序列(seq2seq)的神经模型纳入一个联合学习框架,这一设计可以学习并保存文件的全球语义,为获取文件的重要想法提供更多的背景指导,从而增强摘要的生成。我们对两个数据集进行了广泛的实验,结果显示,我们提议的模型在ROUGE测量和人类评估两方面都超越了许多采掘和抽象系统。我们的代码可以在https://github.com/chz816tas上查阅。