This paper presents a new hierarchical vision Transformer for image style transfer, called Strips Window Attention Transformer (S2WAT), which serves as an encoder of encoder-transfer-decoder architecture. With hierarchical features, S2WAT can leverage proven techniques in other fields of computer vision, such as feature pyramid networks (FPN) or U-Net, to image style transfer in future works. However, the existing window-based Transformers will cause a problem that the stylized images will be grid-like when introduced into image style transfer directly. To solve this problem, we propose S2WAT whose representation is computed with Strips Window Attention (SpW Attention). The SpW Attention can integrate both local information and long-range dependencies in horizontal and vertical directions by a novel feature fusion scheme named Attn Merge. Qualitative and quantitative experiments demonstrate that S2WAT achieves comparable performance to state-of-the-art CNN-based, Flow-based, and Transformer-based approaches. The code and models are available at https://github.com/AlienZhang1996/S2WAT.


翻译:本文展示了一个新的图像风格传输的等级式视觉变换器,称为“条形窗口注意变换器(S2WAT)”,它充当了编码器转换代码结构的编码器。有等级特征,S2WAT可以利用其他计算机视觉领域(例如地貌金字塔网络(FPN)或U-Net)的经证实的技术在未来工程中进行图像风格转换。然而,基于窗口的现有变换器将造成一个问题,即当直接引入图像样式转换时,板状图像将类似于网格。为了解决这个问题,我们建议S2WAT采用“条窗口注意”来计算其代表。S2WAT,SWAT可以通过名为“Attn Merge”的新型特征组合计划,将本地信息和远程依赖纳入横向和纵向方向。定性和定量实验表明S2WAT的性能与基于CNN、流基和变换器的状态式图像转换方法相似。该代码和模型见https://github.com/AlienZhang1996/S2WAT。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
50+阅读 · 2022年10月2日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月28日
Arxiv
0+阅读 · 2022年12月27日
Arxiv
11+阅读 · 2022年3月16日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
39+阅读 · 2021年11月11日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员