Language Identification (LID), a recommended initial step to Automatic Speech Recognition (ASR), is used to detect a spoken language from audio specimens. In state-of-the-art systems capable of multilingual speech processing, however, users have to explicitly set one or more languages before using them. LID, therefore, plays a very important role in situations where ASR based systems cannot parse the uttered language in multilingual contexts causing failure in speech recognition. We propose an attention based convolutional recurrent neural network (CRNN with Attention) that works on Mel-frequency Cepstral Coefficient (MFCC) features of audio specimens. Additionally, we reproduce some state-of-the-art approaches, namely Convolutional Neural Network (CNN) and Convolutional Recurrent Neural Network (CRNN), and compare them to our proposed method. We performed extensive evaluation on thirteen different Indian languages and our model achieves classification accuracy over 98%. Our LID model is robust to noise and provides 91.2% accuracy in a noisy scenario. The proposed model is easily extensible to new languages.
翻译:语言识别(LID)是建议自动语音识别(ASR)的第一步,用于从音频标本中探测一种口语。但是,在能够多语种处理的最先进的系统中,用户在使用之前必须明确设置一种或多种语言。因此,语言识别(LID)在以ASR为基础的系统无法在多语种环境中分析发声识别失败的发声语言的情况下,发挥着非常重要的作用。我们建议基于关注的循环循环神经网络(CRNN,备受注意),该网络在音频标本的Mel-频Cepstral节能(MFCC)特性上发挥作用。此外,我们复制了一些最先进的方法,即革命神经网络(CNN)和演进常规神经网络(CRNN),并将其与我们提议的方法进行比较。我们对13种不同的印度语言进行了广泛的评价,我们的模型的分类精确度超过98%。我们的LID模型对噪音很强大,在噪音情况下提供91.2%的精确度。提议的模型很容易被新语言所利用。