This paper shows several connections between data structure problems and cryptography against preprocessing attacks. Our results span data structure upper bounds, cryptographic applications, and data structure lower bounds, as summarized next. First, we apply Fiat--Naor inversion, a technique with cryptographic origins, to obtain a data structure upper bound. In particular, our technique yields a suite of algorithms with space $S$ and (online) time $T$ for a preprocessing version of the $N$-input 3SUM problem where $S^3\cdot T = \widetilde{O}(N^6)$. This disproves a strong conjecture (Goldstein et al., WADS 2017) that there is no data structure that solves this problem for $S=N^{2-\delta}$ and $T = N^{1-\delta}$ for any constant $\delta>0$. Secondly, we show equivalence between lower bounds for a broad class of (static) data structure problems and one-way functions in the random oracle model that resist a very strong form of preprocessing attack. Concretely, given a random function $F: [N] \to [N]$ (accessed as an oracle) we show how to compile it into a function $G^F: [N^2] \to [N^2]$ which resists $S$-bit preprocessing attacks that run in query time $T$ where $ST=O(N^{2-\varepsilon})$ (assuming a corresponding data structure lower bound on 3SUM). In contrast, a classical result of Hellman tells us that $F$ itself can be more easily inverted, say with $N^{2/3}$-bit preprocessing in $N^{2/3}$ time. We also show that much stronger lower bounds follow from the hardness of kSUM. Our results can be equivalently interpreted as security against adversaries that are very non-uniform, or have large auxiliary input, or as security in the face of a powerfully backdoored random oracle. Thirdly, we give non-adaptive lower bounds for 3SUM and a range of geometric problems which match the best known lower bounds for static data structure problems.
翻译:本文显示了数据结构问题和对预处理攻击的加密之间的若干连接。 我们的结果覆盖了数据结构的上界、 加密应用程序和数据结构的下界, 如下文的总结。 首先, 我们应用了有加密源的技术Fiat- Naor 倒版来获取数据结构的上界。 特别是, 我们的技术产生了一套包含空间值$S$和( 在线) 时间( 在线) 的算法。 用于预处理 $N$ 输入 3SUM 问题的预版 。 在 $S3\ 3\ cdod T =\ 全域解释{ ( N_ 6) $ 。 这令人失望的是强烈的直线性( Goldstein 和 Al., WADS 2017) 没有数据结构可以解决这个问题 $=N&N2- delta美元 和 美元前端值( 美元) 向任何恒定的 $( delta) 0. 0美元 。 第二, 我们显示一个较弱的基级数据结构的下界 和一个更强的非直径 Stal- sal- dell 动作的内 动作函数的直径 Sdealder 动作功能, 显示一个非常的直径 或直立的直立的 。