We propose three constructions of classically verifiable non-interactive zero-knowledge proofs and arguments (CV-NIZK) for QMA in various preprocessing models. - We construct a CV-NIZK for QMA in the quantum secret parameter model where a trusted setup sends a quantum proving key to the prover and a classical verification key to the verifier. It is information theoretically sound and zero-knowledge. - Assuming the quantum hardness of the learning with errors problem, we construct a CV-NIZK for QMA in a model where a trusted party generates a CRS and the verifier sends an instance-independent quantum message to the prover as preprocessing. This model is the same as one considered in the recent work by Coladangelo, Vidick, and Zhang (CRYPTO '20). Our construction has the so-called dual-mode property, which means that there are two computationally indistinguishable modes of generating CRS, and we have information theoretical soundness in one mode and information theoretical zero-knowledge property in the other. This answers an open problem left by Coladangelo et al, which is to achieve either of soundness or zero-knowledge information theoretically. To the best of our knowledge, ours is the first dual-mode NIZK for QMA in any kind of model. - We construct a CV-NIZK for QMA with quantum preprocessing in the quantum random oracle model. This quantum preprocessing is the one where the verifier sends a random Pauli-basis states to the prover. Our construction uses the Fiat-Shamir transformation. The quantum preprocessing can be replaced with the setup that distributes Bell pairs among the prover and the verifier, and therefore we solve the open problem by Broadbent and Grilo (FOCS '20) about the possibility of NIZK for QMA in the shared Bell pair model via the Fiat-Shamir transformation.
翻译:我们提议在各种预处理模型中为 QMA 构建三种可经典核查的非互动性零知识证据和参数(CV-NIZK) 。 - 我们为QMA 构建了一种可信任的量子秘密参数模型中的 QMA CV- NIZK 。 在这种模型中,一个值得信任的设置会发送一个验证器的量子验证键和一个验证器的经典验证键。 这是信息理论上的正确和零认知。 假设学习的量子硬度存在错误问题, 我们为 QMA 构建了一种可理解的 CRS 模式。 我们在一个模式中, 验证器会发送一个独立量子量子信息信息, 作为预处理。 这是Coladangelo, Vidick, 和Zhang( CRYPTO'20) 近期工作中考虑的一个相同的模型。 我们的二元模型属性是“双元模型”,这意味着产生两种可分解的CRS, 并且我们拥有一种模式的信息, 和另一个是理论“零读”属性。 这个模型是“卡” 。