Motivation: Behavioral observations are an important resource in the study and evaluation of psychological phenomena, but it is costly, time-consuming, and susceptible to bias. Thus, we aim to automate coding of human behavior for use in psychotherapy and research with the help of artificial intelligence (AI) tools. Here, we present an analysis plan. Methods: Videos of a gold-standard semi-structured diagnostic interview of 25 youth with obsessive-compulsive disorder (OCD) and 12 youth without a psychiatric diagnosis (no-OCD) will be analyzed. Youth were between 8 and 17 years old. Features from the videos will be extracted and used to compute ratings of behavior, which will be compared to ratings of behavior produced by mental health professionals trained to use a specific behavioral coding manual. We will test the effect of OCD diagnosis on the computationally-derived behavior ratings using multivariate analysis of variance (MANOVA). Using the generated features, a binary classification model will be built and used to classify OCD/no-OCD classes. Discussion: Here, we present a pre-defined plan for how data will be pre-processed, analyzed and presented in the publication of results and their interpretation. A challenge for the proposed study is that the AI approach will attempt to derive behavioral ratings based solely on vision, whereas humans use visual, paralinguistic and linguistic cues to rate behavior. Another challenge will be using machine learning models for body and facial movement detection trained primarily on adults and not on children. If the AI tools show promising results, this pre-registered analysis plan may help reduce interpretation bias. Trial registration: ClinicalTrials.gov - H-18010607
翻译:动机: 行为观察是研究和评价心理现象的重要资源, 但它是昂贵、 耗时和容易产生偏差的成年人。 因此, 我们的目标是在人工智能工具( AI) 的帮助下, 将人类行为编码用于心理治疗和研究。 在这里, 我们提出一个分析计划。 方法: 对25名有强迫性障碍的年轻人和12名没有心理诊断的年轻人进行黄金标准半结构诊断性访谈的视频( OCD ) 将会得到分析。 年轻人年龄在8至17岁之间。 视频中的特征将被提取并用于计算行为评级, 并将与受过训练、 使用特定行为编码手册的心理健康专业人员的行为评级相比较。 我们将用多变分析( MANOVA ) 测试OCD 诊断性的行为评级。 使用生成的特征, 将构建并使用二元挑战分类模型来分类 OCD/ no- OWD 课程。 讨论: 这里, 我们使用预定义的直观行为模型, 将使用预变校准的直观性分析, 将分析。