Despite known differences between reading and listening in the brain, recent work has shown that text-based language models predict both text-evoked and speech-evoked brain activity to an impressive degree. This poses the question of what types of information language models truly predict in the brain. We investigate this question via a direct approach, in which we eliminate information related to specific low-level stimulus features (textual, speech, and visual) in the language model representations, and observe how this intervention affects the alignment with fMRI brain recordings acquired while participants read versus listened to the same naturalistic stories. We further contrast our findings with speech-based language models, which would be expected to predict speech-evoked brain activity better, provided they model language processing in the brain well. Using our direct approach, we find that both text-based and speech-based language models align well with early sensory regions due to shared low-level features. Text-based models continue to align well with later language regions even after removing these features, while, surprisingly, speech-based models lose most of their alignment. These findings suggest that speech-based models can be further improved to better reflect brain-like language processing.
翻译:暂无翻译